Dynamics of transversally vibrating non-prismatic Timoshenko cantilever beams

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isogeometric Analysis for Nonlinear Dynamics of Timoshenko Beams

The dynamics of beams that undergo large displacements is analyzed in frequency domain and comparisons between models derived by isogeometric analysis and p-FEM are presented. The equation of motion is derived by the principle of virtual work, assuming Timoshenko’s theory for bending and geometrical type of nonlinearity. As a result, a nonlinear system of second order ordinary differential equa...

متن کامل

Transverse Vibration for Non-uniform Timoshenko Nano-beams

In this paper, Eringen’s nonlocal elasticity and Timoshenko beam theories are implemented to analyze the bending vibration for non-uniform nano-beams.  The governing equations and the boundary conditions are derived using Hamilton’s principle. A Generalized Differential Quadrature Method (GDQM) is utilized for solving the governing equations of non-uniform Timoshenko nano-beam for pinned-pinned...

متن کامل

Non-dissipative boundary feedback for Rayleigh and Timoshenko beams

We show that a non-dissipative feedback that has been shown in the literature to exponentially stabilize an Euler-Bernoulli beam makes a Rayleigh beam and a Timoshenko beam unstable.

متن کامل

A Study on Non-linear Free Vibration of Cantilever Beams

Non-linear flexural vibration of beams with various boundary conditions such as hinged–hinged, clamped–clamped and clamped–hinged has been extensively studied using analytical approaches and numerical methods like FEM. A detailed review has been brought out by Rosenberg [1] and Satyamoorthy [2]. However, the investigation pertaining to the cantilever case, which is also of practical interest, i...

متن کامل

Stiffness Matrices for Axial and Bending Deformations of Non-Prismatic Beams with Linearly Varying Thickness

Siffness matrices for axial and bending deformations of a beam having a rectangular cross sectional area of constant width and linearly varying thickness are developed. A consistant load vector for a uniformly distributed lateral load is also calculated, using the principal of potential energy. The matrices are used to obtain numerical results for a variety of beams with non-uniform thickness t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Engineering Structures

سال: 2018

ISSN: 0141-0296

DOI: 10.1016/j.engstruct.2018.03.088